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Abstract 

Sastre Pérez, Jefry; Lucena, Carlos José Pereira de. (Advisor). An 

Agent-based Software Framework for Machine Learning Tuning, 2018. 

55p. Dissertação de Mestrado - Departamento de Informática, Pontifícia 

Universidade Católica do Rio de Janeiro. 

 

Nowadays, the challenge of knowledge discovery is to mine massive amounts 

of data available online. The most widely used approaches to tackle that challenge 

are based on machine learning techniques. In spite of being very powerful, those 

techniques require their parameters to be calibrated in order to generate models with 

better quality. Such calibration processes are time-consuming and rely on the skills 

of machine learning experts. Within this context, this research presents a framework 

based on software agents for automating the calibration of machine learning 

models. This approach integrates concepts from Agent Oriented Software 

Engineering (AOSE) and Machine Learning (ML). As a proof of concept, we first 

train a model for the Iris dataset and then we show how our approach improves the 

quality of new models generated by our framework. Then, we create instances of 

the framework to generate models for a medical images dataset and finally we use 

the Grid Sector dataset for a final experiment. 

 

Keywords 

Agent-oriented Software Engineering (AOSE); Machine Learning; 

Calibration Process. 
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Resumo 

Sastre Pérez, Jefry; Lucena, Carlos José Pereira de. Um Framework 

Baseado em Agentes para a Calibragem de Modelos de Aprendizado de 

Máquina. Rio de Janeiro, 2018. 55p. Dissertação de Mestrado - 

Departamento de informática, Pontifícia Universidade Católica do Rio de 

Janeiro. 

 

Hoje em dia, a enorme quantidade de dados disponíveis online apresenta um 

novo desafio para os processos de descoberta de conhecimento. As abordagens mais 

utilizadas para enfrentar esse desafio são baseadas em técnicas de aprendizado de 

máquina. Apesar de serem muito poderosas, essas técnicas exigem que seus 

parâmetros sejam calibrados para gerar modelos com melhor qualidade. Esses 

processos de calibração são demorados e dependem das habilidades dos 

especialistas da área de aprendizado de máquinas. Neste contexto, esta pesquisa 

apresenta uma estrutura baseada em agentes de software para automatizar a 

calibração de modelos de aprendizagem de máquinas. Esta abordagem integra 

conceitos de Engenharia de Software Orientada a Agentes (AOSE) e Aprendizado 

de Máquinas (ML). Como prova de conceito, foi utilizado o conjunto de dados Iris 

para mostrar como nossa abordagem melhora a qualidade dos novos modelos 

gerados por nosso framework. Além disso, o framework foi instanciado para um 

dataset de imagens médicas e finalmente foi feito um experimento usando o dataset 

Grid Sector. 

Palavras-chave 

Sistemas Multiagentes; Aprendizado de Máquina; Calibragem de Modelos. 

DBD
PUC-Rio - Certificação Digital Nº 1522025/CA



Content 

1.1 Research Problem 12 

1.2 Objective 12 

1.3 Expected Contributions 13 

1.4 Work Structure 14 

2 Background 15 

2.1 Frameworks 15 

2.1.1 White, Gray and Black boxes 15 

2.1.2 Hot spots and frozen spots 16 

2.2 Multiagent Systems 16 

2.2.1 Multiagent Systems and Machine Learning 16 

2.3 KDD Methodologies 17 

2.3.1 Knowledge Discovery Process (KDD) 18 

2.4 DICOM Standard 19 

2.5 Quality metrics for the classification problem 20 

3 Related Work 22 

3.1 Systems focused on domain experts 22 

3.1.1 Azure Machine Learning 22 

3.1.2 Amazon Machine Learning 23 

3.1.3 Rapidminer 24 

3.1.4 WEKA 24 

3.2 Code-Oriented Solutions 24 

3.2.1 Google Prediction API 25 

3.2.2 ML Base 25 

3.2.3 LARA 26 

3.2.4 Other Solutions 26 

3.3 AutoML 27 

DBD
PUC-Rio - Certificação Digital Nº 1522025/CA



4 Proposed Solution 29 

4.1 The basic functionality understanding: The frozen spots architecture 29 

4.2 Data Model 30 

4.3 Mapping the Data 31 

4.4 Agents Model 32 

4.4.1 Trainer Agent 32 

4.4.2 Optimizer Agent 33 

4.5 Optimizers 34 

4.6 Details of the API 35 

5 Experiments 37 

5.1 Iris Experiment 37 

5.1.1 Iris Dataset 37 

5.1.2 Results 38 

5.2 Lung Images Experiment 40 

5.2.1 Lung Images Dataset 40 

5.2.2 Results 43 

5.3 Grid Sector Experiment 47 

5.3.1 Grid Sector Dataset 47 

5.3.2 Results 48 

6 Conclusion and Future work 50 

7 References 52 

 

DBD
PUC-Rio - Certificação Digital Nº 1522025/CA



List of Figures 

Figure 1. Data generated every minute in 2014................................................... 11 

Figure 2 The KDD process .................................................................................. 18 

Figure 3 Traditional notation in a confusion matrix ............................................ 20 

Figure 4 Design of the AutoML challenge .......................................................... 27 

Figure 5 The proposed architecture ..................................................................... 29 

Figure 6 ERM Model ........................................................................................... 31 

Figure 7 Agents Model ........................................................................................ 32 

Figure 8 TrainerAgent Activities Diagram .......................................................... 33 

Figure 9 Optimizer Agent Activities Diagram .................................................... 34 

Figure 10 API Class Diagram .............................................................................. 35 

Figure 11 Framework instance for the IRIS experiment ..................................... 38 

Figure 12 Original and annotated images ............................................................ 41 

Figure 13 Annotated bitmap image ..................................................................... 42 

Figure 14 Dataset construction process ............................................................... 43 

Figure 15 Lung dataset framework instance........................................................ 43 

Figure 16 Models proposed by the software agents for the Lung Image 

Experiment................................................................................................... 45 

Figure 17 Models trained by the software agents in terms of precision and  

recall ............................................................................................................ 46 

Figure 18 Models with recall greater than 0.75 ................................................... 47 

Figure 19 Framework instance for the GridSector Experiment .......................... 48 

Figure 20 Results obtained from the software agents from the GridSector 

Experiment................................................................................................... 49 

 

  

DBD
PUC-Rio - Certificação Digital Nº 1522025/CA



10 
 

List of Tables 

Table 1 Summary of the Iris Dataset ................................................................... 38 

Table 2 Initial experiment setup for the Iris Experiment..................................... 38 

Table 3 Experiments ran and proposed by the agents for the Iris Experiment .... 39 

Table 4 Metrics recorded by the framework for the Iris Experiment .................. 39 

Table 5 Initial experiment setup for the Lung Images Experiment ..................... 44 

Table 6 Initial experiment setup for the Grid Sector Experiment ....................... 48 

  

 

DBD
PUC-Rio - Certificação Digital Nº 1522025/CA



11 
 

Introduction 

According to (“Data Never Sleeps 5.0 | Domo,” 2017) as shown in Figure 1, 

every minute on the internet over 4 million queries are made on Google, more 

than 200 million emails are sent and users share almost 2.5 million pieces of 

content on Facebook, among other actions. The amount of data generated is 

growing exponentially (Ranganathan, 2011) and we need to be prepared to face 

all the challenges upfront. Peter Norvig at Google’s Zeitgeist Conference (2011) 

refers to this matter, stating: 

“We don’t have better algorithms. We just have more data”. 

Indeed, the huge volumes of data available are a massive challenge to be 

accepted, but at the same time a vast opportunity to learn from the data to generate 

more expert artificial intelligent softwares and to enhance the knowledge 

discovery processes (KDD). 

 

Figure 1. Data generated every minute in 2017 

One of the most popular and widely used approaches to generate knowledge 

is through machine learning techniques. In order to obtain better results from 

machine learning algorithms, we need to adjust their parameters. This calibration 

process makes the resulting models more accurate and, certainly, more profitable; 
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but the drawback at stake is time. The tuning process is generally done by hand, 

is highly time consuming and strongly relies on the skills of machine learning 

experts, turning it into an extenuating process. 

Within this context, we foresee a chance to incorporate knowlegde from the 

Agent Oriented Software Engineering (AOSE) area to automate the process of 

tuning the models prone to the generation of more accurate models and, at the 

same time, reduce efforts dedicated to produce more accurate models. Agents are 

software components with autonomy, reactiveness, proactiveness and social 

capabilities (Lucena & Nunes, 2013). Agent autonomy comes in handy when a 

system needs to make its own decisions. The agents could also use their 

proactiveness to guide the tuning process. As a result, it is possible to see how 

multiagent systems can contribute to the automation of machine learning. To solve 

this problem, we propose a framework based on software agents to handle the 

tuning of machine learning models. 

1.1 Research Problem 

Taking into account the context involving this research, our research 

question is: “How can agent-oriented software engineering contribute to the 

machine learning area making a suitable use of well-established methodologies?” 

In order to solve the main problem, we define the following questions: 

RQ1: Is it possible to design a framework for generating machine learning 

models? 

RQ2: Can software agents be created to train and tune machine learning 

models? 

RQ3: Will the agents be able to improve the performance of the models? 

Inside the automatic machine learning area, we target the problem of 

calibrating the parameters of a machine learning model, not the selection of the 

first model. 

1.2 Objective 

To tackle the research question, we define our objective as: 

Propose a framework embedded into a multiagent system to handle the 

tuning of data mining processes in conformance with existing methodologies. 

To achieve this goal, we define the following specific objectives: 

• Design an environment to save the related entities in a knowledge 

discovery process; 
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• Develop a process to allow users to create and plan their 

experiments; 

• Create a software agent capable of training the scheduled 

experiments and collecting results; 

• Create a software agent capable of tuning the hyperparameters of the 

trained models and propose new models based on the best 

parameters selection. 

• Allow users to test and exploit the generated models. 

 

1.3 Expected Contributions 

Some contributions are:  

• The system proposes new models that may have good performance based 

on the models previously trained. This includes a new set of possibilities 

in the selection of the ways and strategies that will guide the optimizations. 

The system allows the creation of a committee of models to predict and 

negotiate a consensus among all the predictors in order to deliver a 

solution. In addition, the results of the system do not depend on a single 

trained model, but on a set of models that might be specialized at detecting 

specific characteristics. 

• The framework could reduce the time spent by the user to train a successful 

model with a multiagent system to support the training process. The idea 

is to configure some of the training and allow the system to handle the 

training results, the timing and the long wait for the end of the training and 

the start of a new one without human interference. 

• Validate three case scenarios: (i) Iris, this case is an exploratory study 

taken as a proof of concept but instantiating the framework and exploiting 

the agents to generate new models; (ii) Lung Detection, this dataset 

contains medical images provided by specialized equipment. In the 

images, the lung tissue can be detected and the goal of this experiment is 

to provide the framework with low performance models and evaluate the 

performance of the models genererated by the agents; (iii) Grid Sector, this 

dataset contains images from Google Earth with constructed areas with 

different geographical characteristics from 12 areas of Brazil. 
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1.4 Work Structure 

This dissertation is organized as follows. Chapter 2 gives an overview of the 

main concepts, methodologies, and patterns used along the research. Chapter 3 

shows the related work divided into three categories: domain expert focus, code 

oriented and the AutoML Challenge. Chapter 4 presents the framework and 

explains each part of the development process in details. Chapter 5 describes the 

experiments. Finally, chapter 6 offers the conclusion and future work. 
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2 Background 

This chapter describes the main concepts related to agents and multiagent 

systems. First, we discuss frameworks, multiagent systems, agents and their 

properties. We also discuss the relation between multiagent systems and machine 

learning. We review some of the most widely used methodologies in literature for 

the KDD process. Finally, we provide a brief explanation of the gamma correction 

algorithm. 

2.1 Frameworks 

 A framework is not an application in itself: it is a generator of specific 

domain related applications. Those applications are gathered together in a family 

of problems (Markiewicz & de Lucena, 2001). The common framework 

development process contains three remarkable stages: (i) domain analysis 

includes a survey of requirements, expectations and experiences. During this 

stage, existing solutions and possible standards related to the problem in question 

are examined; (ii) framework design is to design the project and highlight the 

flexibility points of the architecture taken into account the requirements and 

discoveries gathered in the initial stage. In this stage, the design patterns to be used 

when coding are shaped; and (iii) framework instantiation is to generate 

applications by implementing the extension points made available and using the 

shared code that solve the common aspects of the family of problems; the same 

aspects, that gathered together in the first place. 

 

2.1.1 White, Gray and Black boxes 

A framework can be seen as a box that has inside functionalities to solve 

common aspects of a group of problems. In the literature those boxes can be 

classified in white, gray, or black, according to their extensibility capabilities. A 

white box framework is extensible only by coding the missing parts of the 

program. In general, this kind of framework requires an advanced understanding 

of the fixed internal code of the framework because the developers have to finish 

the implementation of the application. A black box framework, on the other hand, 

generates applications using configuration scripts, and an automated tool 
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generates the source code. These kinds of frameworks are often simpler. A gray 

box is a framework somewhere in the middle between white and black boxes. This 

kind requires both configuration files and coding to generate instances. The 

complexity of this kind of framework varies depending on how much is needed to 

configure or to be extended. 

In our proposed solution we adopt a white box approach because some of 

the hot spots are not available at design and must be extended from code. 

2.1.2 Hot spots and frozen spots 

During the modeling of the framework the flexible points to be extended are 

highlighted and the fixed modules are shared among instances. The parts of the 

framework that must be implemented to generate new instances are called hot 

spots; the imutable parts are called frozen spots. The hot spots are the way a 

framework has to call instace-specific code. Frameworks are occasionally 

described as “old code calls new code”. The frozen spots are the functionalities 

common to the family of problems. All frozen spots combined form the kernel of 

the framework and will be present in all the instances. 

 

2.2 Multiagent Systems 

A multiagent system can be defined as an environment shared by 

autonomous entities that live, interact, receive information and can act in the 

environment (Khalil, Abdel-Aziz, Nazmy, & Salem, 2015). These agents are 

abstractions with the following properties (Wooldridge, 2009): (i) autonomy —

the capability of taking their own actions within their environment; (ii) reactivity 

— the capability of responding to the changes in the environment, which involves 

a notion of perception of the environment; (iii) social ability — the capability of 

interacting with other agents and possibly humans, and (iv) proactive ability —

the capability of taking actions towards the agent’s goals. 

The exploratory study described in Chapter 5 demonstrated that the agents’ 

properties were useful in the simulation of the training process to optimize the 

parameters of a model based on the previously trained models and in proposing 

new models that might be more accurate. 

2.2.1 Multiagent Systems and Machine Learning 

The idea of joining these two areas seems very natural. In artificial 

intelligence, we consider that software agents are autonomous entities and are 
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capable of making decisions without human interference. On the other hand, 

learning is a crucial part of the autonomy: the more skilled the agent, the better 

decisions it will make (Alonso, D’inverno, Kudenko, Luck, & Noble, 

2001)(Alonso, D’inverno, Kudenko, Luck, & Noble, 2001)(Alonso, D’inverno, 

Kudenko, Luck, & Noble, 2001)(Alonso, D’inverno, Kudenko, Luck, & Noble, 

2001). Indeed, in most dynamic domains it is extremely hard to predefine the 

agents’ actions, which mostly emerge with new behaviors in order to adapt 

themselves to the current situation. 

There are several aspects to take into account when dealing with machine 

learning in multi‑agent systems. First, the coordination of agents — there must be 

some coordination mechanism for agents to engage and interact in some way. 

Note here that the coordination is supposed to happen at runtime, therefore, it has 

to be part of the agent’s internal activity cycle (Khalil et al., 2015). Second, 

dealing with cooperation can be a problem when agents need to team up to achieve 

some goals. Third, the noisy environment — specifically, how to deal with 

supervised learning when the result can be biased by the noise. Finally, together 

with the noisy environment comes the partial knowledge; to deal with it, agents 

use strategies and metaheuristics to guide the search as in (Nouri, Driss, & 

Ghédira, 2015)(Nouri, Driss, & Ghédira, 2015)(Nouri, Driss, & Ghédira, 

2015)(Nouri, Driss, & Ghédira, 2015). 

Some approaches use a machine learning model in the agents’ activities 

cycle to take actions (Khalil et al., 2015). Other approaches use a multiagent 

system — known as multiagent learning (MAL) — to learn (Shoham, Powers, & 

Grenager, 2007), (Stone, 2007). In the latter approaches the integration of the 

agents’ capabilities and the learning algorithms are combined to solve a problem 

from another domain. Nevertheless, our approach is a multiagent system applied 

to a machine learning domain. 

2.3 KDD Methodologies 

In the data mining field, there have been some efforts to establish the bases 

and patterns to guide the process. Within this context, SEMMA and CRISP-DM 

raise as industrial methodologies to mine the data (Fayyad, Piatetsky-Shapiro, & 

Smyth, 1996). This paper offers a comparative overview of the two standards as 

implementations of the knowledge discovery process (KDD). The attention paid 

in this area comes from the recent data explosion on the internet and the large 

databases generated from numerous companies. 
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The authors chose these two very well-established standards because they 

are considered to be the most popular among the industrial and research areas. The 

authors state that "the five stages of the SEMMA process can be seen as practical 

implementation of the five stages KDD process". They based this affirmation on 

the idea that SEMMA is directly linked to the Enterprise Miner software. On the 

other hand, in CRISP-DM the authors say that it involves pre and pos KDD stages. 

Those stages are linked to the understanding of the business domain and the 

deployment for the client. 

2.3.1 Knowledge Discovery Process (KDD) 

The term “was coined in 1989 to refer to the broad process of finding 

knowledge in data, and to emphasize the high-level application of particular data 

mining methods.” (Azevedo & Santos, 2008). 

The KDD process contains five stages as shown in Figure 2, namely: 

Selection, Preprocessing, Transformation, Data Mining, 

Interpretation/Evaluation. 

• Selection: This stage aims to precisely define a target dataset. It can 

be done by directly selecting a dataset or a subset of features. 

• Pre-processing: This stage focuses on cleaning the data. It means that 

the data generated most of the times is fiilled with nulls and 

inconsistencies and need to be cleaned in order to become profitable. 

• Transformation: This stage aims at applying some transformation 

algorithms to generate the final dataset to explore. It is common to 

use dimensionality reduction algorithms, normalize the data, etc. 

• Data Mining: This stage focuses on the search for the required 

patterns in the data according to the mining objectives. 

• Interpretation/Evaluation: "This stage consists of the interpretation 

and evaluation of the mined patterns." (Azevedo & Santos, 2008) 

 

Figure 2 The KDD process 
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2.4 DICOM Standard 

DICOM stands for Digital Imaging and Communications in Medicine and 

it was created with the purpose of solving the communication and exchange 

problem between different manufacturers of medical images (Association & 

others, 2009). The core of the standard is a file format and a network protocol 

based on TCP/IP. Nowadays, it has almost global acceptance among medical 

equipment manufacturers and guarantee the interconnectivity in a multi-vendor 

hospital environment. 

The DICOM object is a collection of data elements. A data element is a data 

structure containing the following fields: 

• Tag: It is a unique identifier for each data element. 

• VR: It is called representation value and it is the data type of the data 

element. 

• Length: It is the Length of the data in bytes. 

• Value: It is the data stream. 

The data elements are organized in a hierarchy. At the top of the hierarchy 

there is the patient and it contains data elements such as Patient’s Name, Patient’s 

ID, and Patient’s Age. Below the patient there is the exam. The data elements 

related to the exam are Study Date, Modality, among others. The exams are 

splitted into Series. A Serie is a logical division of the exam. For instance, an 

image exam can have a frontal and a sagittal series. The series have data elements 

related such as Samples Per Pixel, Rows, Columns, and Bits Allocated. A Serie is 

a collection of images. Images hava data elements associated such as Pixel Data, 

Image Position, among others. 

The DICOM objects are transferred using the DICOM Networking Protocol. 

This protocol defines nodes and operations through the network. A node in a 

DICOM network is called Application Entity and is defined by the following 

properties: 

• Host: IP address of the equipment in the network 

• Port: Port to establish a connection. By default, the DICOM protocol 

uses the port 104, but it can be changed. 

• AE Title: It stands for Application Entity Title and contains an 

alphanumeric combination of fixed length of 16 chars. 

To communicate different application entities the DICOM protocol define 

services to support basic and complex operations. For instance, basic operations 
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such as create, delete, set, and get; and complex operations such as find, move, 

and echo. Using these services to specify the operation, the DICOM nodes apply 

the following communication steps: 

• Association Establishment: In this step, the DICOM nodes uses the 

A-Associate-RQ (DICOM association request), the A-Associate-AC 

(DICOM request acceptance), and the A-Associate-RJ (DICOM 

association rejection) to start a connection between two application 

entities. 

• Data Transfer: In this step are sent the P-Data-TF (DICOM block 

data transfer) from one application entity to another. The P-Data-TF 

message contains the DICOM objects with the data elements 

relatives to the exams. 

• Finalization: In this step, the application entities uses the A-Release-

RQ (finish association request) and the A-Release-RP (answer to a 

finish association request) to safely close the connection between the 

two application entities. 

At any point during the communication the A-Abort message to abort any 

invalid association can be sent. 

2.5 Quality metrics for the classification problem 

In this section, we will discuss the metrics used in the Experiments chapter 

to analyze the results. In this work we will focus only on the classification 

problem. 

 

Figure 3 Traditional notation in a binary classification confusion 

matrix 

Figure 3 shows a relation between the true classification in the columns and 

the predicted classification in the rows. The True Positives value (TP), holds the 

number of instances predicted as true and in fact were true. The True Negatives 

value (TN) is the number of instances predicted as false and they were really 

falses. The False Positives value (FP), counts the number of false values predicted 
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as true while the False Negatives value (FN) counts the number of true values 

predicted as false. 

Based on this representation, there are several metrics commonly used to 

evaluated prediction results: 

• Accuracy: It is the number of correctly classified instances (Powers, 

2011). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

• Precision: This measure takes into consideration the number of false 

positives. The higher the precision, the fewer errors the model make 

when it predicts true (Fawcett, 2006). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall: This measure takes into consideration the number of false 

negatives. The higher the recall, the fewer errors the model make 

when it predicts false (Fawcett, 2006). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• F1: This measure combines Precision and Recall and balance their 

problems. For instance, a maximum Recall can be obtained by 

always predicting true (Fawcett, 2006). 

𝐹1 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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3 Related Work 

Many authors (Garner & others, 1995; Kraska et al., 2013; Kunft, 

Alexandrov, Katsifodimos, & Markl, 2016; Luo, 2016; Sparks et al., 2013) have 

created systems to support the data mining process. A common discussion among 

all authors is about the target user and the environment — some systems are 

designed to be used by domain experts and others by data mining experts. Systems 

dedicated to non-experts normally focus on the analysis of the domain-specific 

features while other systems propose educational environments for novices to 

learn and interact. On the other hand, systems designed to be used by data mining 

experts focus on performance, optimizations and coding capabilities. 

3.1 Systems focused on domain experts 

Within the context of non-experts, (Abadi et al., 2016) present a simulation 

tool that aims at creating an initial insight on neural networks with a very user 

friendly interface and it has proven to be a great choice for educational purposes. 

However, the datasets available for analysis are fixed and focused only on gaining 

some understanding of the learning process. 

 There are some commercial solutions, such as Azure Machine Learning 

(Barnes, 2015), Amazon Machine Learning (Nketah, Gabriel Uchechukwu, 2016) 

and Rapidminer (Klinkenberg, 2013). All of them are online services and provide 

support to the data mining process by means of an intuitive interface and a huge 

collection of ready to use algorithms. 

3.1.1 Azure Machine Learning 

Microsoft Azure offers cloud computing services designed for both 

developers and data experts to provide them with build, deploy and management 

services on the cloud. By using the Azure services the platform incorporates a 

layer of security, safety and stability provided by their data centers. Azure 

integrates with Xamarin for mobile development and with the Bot Framework to 

enable the interaction between users and bots. Among their products there is a 

machine learning solution called Azure ML Studio. It is a very complete drag and 

drop application that integrates algorithms, statistics and analysis in a combined 
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environment. To save time they also offer a set of pre-built templates with the 

most widely used and common strategies. 

To set the cloud programming environment it is necessary to have a valid 

Microsoft account, a valid credit card and an updated web browser. Azure offers 

a trial period of 30 days with $200 to spend in services. The system is designed to 

be used just with drag-and-drop operations and to easily integrate within the 

Microsoft platform. Programming turns out to be connecting the objects in the 

board with arrows to set up the workflows of the experiment and setting all the 

required parameters during the workflow, like the amount of data to be separated 

and saved for the testings at the end. 

Due to the fact of the visual programming and workflows creation the Azure 

ML Studio is well suited for domain experts or newbies on machine learning and 

data analysis. 

3.1.2 Amazon Machine Learning 

Amazon Machine Learning is a service offered by Amazon on their Amazon 

Web Services (AWS) platform to create machine learning models and generate 

predictions. This service is based on a premise, support scalability. Users can start 

consuming few resources and grow along with the applications. The process with 

Amazon comprises three stages: data analysis, model training, and evaluation. The 

data analysis process is to understand the data and to offer possible 

transformations to optimize the training model. The model training step finds 

patterns on the dataset and the evaluations stage calculate the accuracy of the 

predictions. 

The Amazon solution offers key features, such as integration with AWS to 

facilitate the work with data already in the cloud. It provides interactive charts to 

help you understand the data and interpret the results of the models. The models 

used within the solution can be binary or multi-class classification models or 

regressions models. The data sets often require some pre-processing and Amazon 

Machine Learning offers the most common data transformations ready to be used 

and which will be suggested when the users upload their data. All the necessary 

resource to run the models are auto-managed internally by the Amazon services. 

Amazon Web Service offers a 12-month free trial with limited resources and 

number of service calls. 
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3.1.3 Rapidminer 

Rapidminer is an online platform to support data science and machine 

learning experiments on the cloud. They offer a visual solution with more options 

than the current existing solutions, it is open (not free) and extensible to cover 

specific needs. The solutions offer a unified platform to support the whole process, 

from the data preparation to the deployment of the results. They based the solution 

on visual programming, allowing domain experts to create workflows and use the 

data mining algorithms. They support the idea that drag-and-drop programming is 

easy to learn, easy to use, and time saving. This platform offers a wide number of 

predefined models to extract patterns and analyze and accept the use of open 

technologies well accepted by the data-science community. They guarantee the 

ability and the capabilities to work with big data and to perform statistical analysis 

with a cost-effective performance. 

3.1.4 WEKA 

WEKA (Garner & others, 1995; Hall et al., 2009) is a system that offers a 

collection of algorithms to explore real world datasets. It has three well defined 

categories of algorithms: (i) dataset processing, (ii) machine learning schemes, 

and (iii) output processing. One of the most remarkable advantages is that it 

contains many of the existing algorithms implemented and tested, ready to be 

used. By combining all these tools together, WEKA has proved essential to the 

analysis process and as an introductory tool for educational environments. 

However, this tool does not focus on the challenges of use ML in distributed ways; 

all its algorithms are presented as black boxes and do not focus on distributed 

ways to improve the data mining processes, and WEKA requires some expertise 

to choose the most profitable algorithm. 

3.2 Code-Oriented Solutions 

All these solutions focus on reducing usage complexity, tuning hyper 

parameters and gaining some understanding of the data, but none of the previous 

approaches aims at creating a safe shared environment to enhance the interaction 

between the users and the system. By using the agent’s capabilities, users and 

agents can both solve the data mining process, complementing each other’s 

weaknesses. 
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3.2.1 Google Prediction API 

Google Prediction (Green & others, 2011) offers a cloud computing solution 

that includes computing, storage, network, security and easy access. Among the 

modules in the solution there is a Cloud Machine Learning Engine, which 

provides services to build machine learning models. The models create a Google 

Cloud Machine Learning Engine uses the Tensorflow framework to create the 

models and easily integrates with Google Photos and Google Cloud Speech. 

Models are rapidly available for prediction and the services are integrated with the 

Google Cloud Dataflow for pre-processing. 

Google's solution offers integration among their services, manage all the 

necessary resources for training and publishing services to consume the 

predictions of the trained models. The user creates the hardware configurations to 

run the experiments, which are easily scalable to new configurations, or to enable 

some parallel processing. Finally, through the use of the Tensorflow framework, 

they support locally training and integration with the cloud platform anytime, as 

well as the other way around: It is possible to train a model online and then 

download and test locally. 

To configure the Google Prediction API, the users need a valid Google 

account, a valid credit card, and a project on the Google Cloud Platform services 

with both services activated: the Google Prediction API and the Google Cloud 

Storage. It has a credit of $300 of free trial to use in 12 months on the services of 

the platform. From that point, all the process is made by using the cloud services 

provided by google. Google Prediction API requires web knowledge and 

understanding of the RESTful web services to be fully used and is best suited for 

data mining experts and code first programmers “Code first, ask later”. 

3.2.2 ML Base 

ML Base (Kraska et al., 2013) provides a Domain Specific Language (DSL) 

with high level abstractions to simplify the process. This solution is focused on 

the optimization capabilities and, in both phases, the model selection and the 

optimization capabilities. The authors state that the extraction of the valuable data 

in the Big Data context is a great concern and that the layman users are 

overwhelmed by the theory behind the existing algorithms. 

Within the architecture of the MLBase, there is a Logical Learning Plan, 

which performs sub-samplings of the data, feature analysis, creates possibilities 
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of parameters combinations and tries to eliminate some of them with the help of 

some optimizer and some predictions of the resulting performances. After the 

optimizations, then a physical execution plan is created. The focus of the work is 

on the optimizations for ML and they put aside the integration with relational 

models. ML Base presents a DSL providing a high-level abstraction to create a 

system more accessible to non-experts. The core of the solution is the 

optimization, capable of turning a declarative language into a very elaborated 

execution plan. The solution aims at solving a problem with a single model; 

however, the composition of models that create ensembles has been proven to 

outperform single models, and according to (Luo, 2016), many algorithms and 

large datasets can be slow and limited. 

3.2.3 LARA 

The work (Kunft et al., 2016) is motivated by the problems generated in the 

data analysis, due to the fact that the preprocessing process and the algebra are 

usually done in separated languages.  The need for two different languages not 

only affects the productivity, but also reduces the optimization capabilities and 

often requires additional code to transfer the datasets from the relational 

environment to the algebraic. Within this context the authors present LARA, an 

embedded DSL in Scala, which offers suport for both relational and algebraic 

operations. LARA compiles into an intermediate representation to enable 

optimizations and finally compile to different languages. 

The solution includes data types such as Bag, Matrix, and Vector. All of 

them are intended to be generic and built to be extensible. Among the 

optimizations, there are Matrix Blocking Through Joins, which allows distributed 

matrix operations, Row-wise Aggregation Pushdown and Caching Throughout 

Iterations, bringing several improvements. 

On the other hand, it is embedded into Scala and requires knowledge of 

Scala to be used. Also, this tool requires expert knowledge to perform the KDD 

process. 

3.2.4 Other Solutions 

There are some solutions that target data mining experts and focus on tools 

to improve the techniques. MLI (Sparks et al., 2013) presents an API to easily 

code machine learning algorithms, using their proposed operations for data 

loading and linear algebra to boost the performance; but it relies on the expertise 
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of the programmers rather than the use of previously tested and well established 

implementations of the algorithms  

Predict-ML (Luo, 2016) is a software that uses big clinical data to build 

predictive models automatically. It presents techniques to automatically select 

algorithms, hyper parameters and temporal aggregations of the clinical data, but 

the innovations are focused on the clinical area and the system is still in the design 

phase. 

3.3 AutoML 

AutoML is a new area in computer science, pursuing the progressive 

automation of the machine learning process (Guyon et al., 2015). This area 

addresses all aspects regarding machine learning automation, such as search and 

selection of model, hyperparameters optimization, feature engineering, meta 

learning and transfer learning, among others. 

Within this context, a challenge to boost new solutions towards the AutoML 

goals was created. This challenge includes a novel design element: code 

submission. The code runs in an open-source platform ensuring there is no human 

intervention during testing phases and that all proposed solutions run on hardware 

equality. The challenge contains six phases in which the dataset difficulty is 

progressively increased. After each phase, the competitors have a Tweakathon 

time to improve their method with access to the previously tested datasets. This 

challenge aims at advancing the theoretical state of the art about model selection, 

implementing useful automation solutions, a chance to compare results of the 

automatic software and the Tweakathon phase and to disseminate the top solutions 

and papers. 

 

Figure 4 Design of the AutoML challenge 
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There are five AutoML phases as shown in Figure 4: Novice, Intermediate, 

Advanced, Expert and Master. The novice phase is the easiest because the 

prediction variable is binary, has less than 2,000 features, the classes are balanced 

and there are no missing data categorical variables. Nevertheless, the data matrix 

can be sparse and there are irrelevant features. The second phase can have either 

binary or multiclass classification problems, unbalanced classes, fewer than 5,000 

features, missing values and some categorical variables. In the third phase, the 

competitor can face any kind of classification problem and the number of features 

skyrockets up to 30,000. In the fourth phase, there are no data complexity 

restrictions and regression problems are also included. In the fifth phase, the 

datasets used have never been cited nor used in previous works. So, the final 

challenge is to learn from completely new dataserts. The data is extracted from 

multiple domains and some ongoing developmnt technologies, such as: speech 

recognition, medicine, etc. All the datasets are pre-processed and prepared into 

fixed length feature-based representation. 

For each task, there are limited computational resources. The participants 

willing to submit code share the same hardware configuration and time limits. The 

participants only submitting results are not able to participate in the AutoML 

phases (only the Tweakathon phases), but there are no time or hardware 

restrictions. According to the kind of problems, different metrics are used to 

evaluate the results. The metrics are also rescaled in a way that the baseline results 

are 0 and the best possible results are 1. 
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4 Proposed Solution 

This chapter describes the main elements required to understand the solution 

proposed in this work. In addition, we will provide an overview of the architecture 

and discuss the different components, including the data model and the software 

agents. 

4.1 The basic functionality understanding: The frozen spots 
architecture 

The application is implemented as a framework using software agents, as 

illustrated in Figure 5. It contains a module for: (i) data storage (DB); (ii) data 

access (ORM); (iii) agents; (iv) optimizations (OPT); and (iv) API layer — which 

will bring the functionalities to the final user. 

 

Figure 5 The proposed architecture 

The users interact with the system via the API. The system contains several 

classes to support the knowledge discovery process. The API is directly connected 

to the ORM. The ORM is in charge of all the operations that require data access. 

It allows the system to be independent from the physical data storage and it is also 

the only way to interact with the data. The data refers to the relevant concepts that 

appear in the domain and their relationships. All of them are physically saved in 

the DB module. Considering the user’s experience, the main flow of the 

application only involves the API, the ORM and DB modules. The software agents 

interact in this flow via the ORM module and expertly use the main application 

flow the same way as normal users do. They retrieve, run and propose new 
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experiments in a collaborative environment. By working together, the users (as 

domain experts) and the agents (as machine learning experts) increase the number 

of experiments, searching for a better model to identify the desired patterns. The 

agents in charge of the optimizations trust most of the algorithmic analyses in the 

fifth and last module dedicated to the Optimizations. The TrainerAgent and the 

OptimizerAgent are both hot-spots (Wooldridge & Jennings, 1998). Therefore, it 

is possible to add new models into the system by creating subclasses and 

implementing the particular details of the new model. 

By using the API, the users can evaluate the results, that is, they can check 

if the results meet the initial objective. This phase is crucial, because the models 

selected to be deployed will finally be in contact with non-controlled 

environments and real-life mining examples. Nevertheless, if the users determine 

that the models are not ready to be used, they can define a new experiment or 

allow the agents to search for better models. At all times, the users can monitor 

the results obtained, then, analyze, retrieve and compare several of the model’s 

parameters. 

4.2 Data Model 

Figure 6 presents the data model of the concepts involved in the problem. 

We used the entity-relationship model (ERM) (Chen, 1976). The description of 

the entities is shown below: 

• Task: Aims at capturing the training process of a successful model for a 

machine learning problem, i.e., it is a collection of experiments. 

• Experiment: Defines an experiment, but this concept just contains the 

common aspects, such as running_time, train_accuracy, etc. 
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Figure 6 ERM Model 

• Decision Tree: Defines a specific kind of experiment. In fact, it defines an 

experiment to train a decision tree and contains aspects such as max_depth. 

• Support Vector Machine: Defines a support vector machine type of 

experiment and contains attributes such as kernel. 

• Neural Network: Defines a neural network type of experiment and 

contains attributes such as model that specifies the structure of the network. 

• Host: Defines a computer in the network, and basically selects the 

computer in which the model is going to be trained. 

• Dataset: Represents a generic data collection, used as the examples to train 

a model. 

• RData: Represents a particular type of dataset generated from a script 

executed in R (Gentleman, Ihaka, Bates, & others, 1997) and contains the 

environment variables at the save point. 

• CSV: Represents a standard data exchange format. Most of the time it is a 

collection of comma-separated fields. 

4.3 Mapping the Data 

We include a layer to map the concepts to the API classes, in order to 

facilitate the data access and to abstract the project of the database read and write 

operations. Basically, it is the idea of an Object Relational Mapper (ORM). This 

new layer provides stability and independence for the following layers to use, 

allowing: (i) the change of the data provider without changing the core of the 

project, and (ii) the design of the logic without specific read, write operations that 

might bind the solution to a particular data access. 
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4.4 Agents Model 

This section presents the agents model based on the architecture shown in 

Fig 1. These agents are able to execute the experiments stored in the data model. 

 

Figure 7 Agents Model 

Figure 7 shows the agents-based model proposed. In all the cases, the 

agent’s cyclic behavior was the best option for these software agents – for 

example, in the application domain presented in Chapter 5 the agents have a cyclic 

behavior with 10 seconds between iterations. 

4.4.1 Trainer Agent 

The TrainerAgent is responsible for training an experiment. In order to do 

so, it has to accomplish several subtasks. First of all, it needs to understand the 

type of experiment that the agent is going to execute. For each type of experiment, 

there are different parameters used to set up the training process. Based on these 

parameters, the agent determines the type of dataset that is going to be used and it 

loads the data. At this point, the strategy pattern (Gamma, 1995) was used to 

define which algorithm should be chosen to train and validate the results. After 

the validation, the agent has to collect all the variables being measured and write 

the experiment back. Figure 8 describes this process. 
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Figure 8 TrainerAgent Activities Diagram 

A specific trainer was created to override the specificities of each model and 

to set up some initialization variables such as the type of experiment. 

To run an experiment, both the experiment and the datasets to be used in the 

training and testing must be previously defined. This process only runs the 

experiments and collects the results. On the other hand, due to the characteristics 

of the agent’s cyclic behavior, if there are no experiments programed to run, the 

agent waits a few seconds and asks again. Therefore, once a new experiment is 

added to the database, it will be automatically detected and executed at the right 

time. 

Another important detail is that the experiments are executed as if they were 

on a queue — one at a time in each host. But it is possible to program a set of 

experiments that the agents will automatically run until all the experiments have 

been executed. 

4.4.2 Optimizer Agent 

The OptimizerAgent is responsible for generating new models that may 

have good performance and accuracy based on the previously executed 

experiments of the same type. To complete this task, the agent starts by selecting 

a dataset, because the performance and the accuracy are directly related with the 

dataset used in the training process. Once the dataset is selected the agent retrieves 

the best experiments of a given type and, based on the parameters, it generates and 

saves a new model. Notice here that for each type of experiment the 

OptimizerAgent was extended in order to create specific agents which selected 

the correct algorithm in each case. Figure 9 describes the workflow of the 

OptimizerAgent. 
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Figure 9 Optimizer Agent Activities Diagram 

Observe that the OptimizerAgent needs a different strategy to create the new 

model, depending on the type of the experiment. 

4.5 Optimizers 

Each machine learning strategy comes with a lot of tricks and techniques to 

improve the performance of the model. Some of the techniques can include 

mathematical operations, such as transpose, reverse, etc., which can increase the 

dataset and have a direct impact on the performance as a result. Other techniques 

aim at increasing the number of features in the dataset to facilitate the training 

process and obtain a better model. Some examples include multiplication of 

numeric fields or the use of trigonometrical functions. In addition, there is a group 

of techniques that filter the outliers to obtain a more general model. All these 

approaches work directly on the dataset, but our focus here is to work with the 

existing data and tune the model’s parameters. 

Each one of the techniques has its own unique parameters, so it was 

necessary to create an optimizer for each one, namely: SVMOptmizer, 

DTOptimizer and NNOptimizer. 

The SVMOptimizer takes advantage of the kernel trick (Scholkopf, 2001) 

and creates a new model based only on the best SVM experiment executed. If the 

best model memorizes the dataset, it then decreases the kernel to compact the data. 

On the other hand, if the model’s accuracy is low, then the agent increases the 

kernel to separate the data by adding new dimensions. 

The DTOptimizer uses a similar criterion to increase or decrease the 

max_depth of the decision tree while the NNOptimizer creates a new model by 

randomly combining the two best experiments executed. 
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4.6 Details of the API 

Finally, we created an Application Programming Interface (API) that 

contains the new objects and functionalities required to set up an environment: 

create, train and validate the experiments; test the results, and use the best models 

for prediction. 

 

Figure 10 API Class Diagram 

Figure 10 shows the API class diagram. The Task class defines a collection 

of experiments of the same problem and refers to the same machine learning 

problem. Every machine learning problem requires the analysis of data. The 

Dataset class represents a collection of data to be used and contains features such 

as the path in which it is stored. The data can be stored in different file formats. 

For this reason, each Dataset contains a DatasetType class to specify its type, such 

as RData, CSV, etc. An Experiment class represents the training process of a 

model and contains general variables being measured, such as time. It also 

contains more specific features, depending on the particular model being trained. 

In order to specify the types of experiments allowed to run within the platform all 

the Experiments contain an ExperimentType class. The Predictor class defines an 

object to evaluate a model and the Committee class defines a collection of 

Predictors and contains a parameter to set the number of members. 

First, to use the API, we need to select a Task to work with and after that, 

the experiments can be created and linked to the selected task. Each Experiment 

has a type defined in ExperimentType and can have training, validation and testing 

datasets associated to it, respectively. Each Dataset has a type defined in 

DatasetType. Finally, to predict, based on previously trained models, there are two 

possible classes: (i)-Predictor, which selects the best trained model based on 
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accuracy and uses it to predict, and (ii) Committee, which has a collection of 

predictors and returns a consensus among them. 
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5 Experiments 

The need to build platforms to assist both domain and data mining experts 

in creating a safe common environment to enhance the interaction between the 

users and the system to train machine learning models is currently a critical 

problem, especially when the training process can iterate over several models and 

the new models depend on the results of the previously executed experiments. The 

metrics used to evaluate the results were accuracy detailed in (Provost, Fawcett, 

& Kohavi, 1998) and precision, recall and F1-score detailed in (Powers, 2011). 

In this chapter, the experiments made on three datasets are presented: IRIS, 

Lung Images, and Grid Sector. First, we discuss relevant aspects of the datasets. 

Then, the framework is instantiated and finally the results are discussed. 

 

5.1 Iris Experiment 

The experiment is divided into two stages. First, we set up the environment 

and create the proper conditions to run the experiment — in this case, it was 

necessary to launch the agents’ platform, to configure the database access and to 

establish the initial experiment. Second, the agents start their work by training the 

first model and writing the results. The variables that were measured were the 

training and validation accuracy, as well as the start and end time. At this point, 

the OptimizerAgent analyzes the results of the finished experiments and proposes 

a new experiment using the same dataset. 

5.1.1 Iris Dataset 

The data used in this example was the IRIS dataset found in the UCI 

Machine Learning Repository (Bache & Lichman, 2013). It contains 150 instances 

of three classes of iris plants. The predictable attribute is the type of plant, based 

on four other attributes: sepal length, sepal width, petal length and petal width — 

all the measurements are in centimeters (cm). This dataset has no missing values 

and two of the three types of iris are not linearly separable. Table 1 shows a brief 

summary of the data. 
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Table 1 Summary of the Iris Dataset 

5.1.2 Results 

The framework was instantiated as shown in Figure 11. The TrainingAgent 

and the OptimizationAgent were extended into the SVMTrainingAgent and the 

SVMOptimizationAgent respectively in order to implement specificities about 

how to train and optimize an SVM model (Cortes & Vapnik, 1995). In this case, 

for the optimization agent, we use a grid search approach allowing the parameter 

C the values 1.0, 1.5, and 2.0 and for the Degree the values 1, 2 and 3. The class 

SVMExperiment inherits for the SpecificExperiment hotspot and adds the 

parameters needed to train an SVM experiment. Finally, the FileData class and 

the CSVData are classes created to store a reference to the dataset. 

 

Figure 11 Framework instance for the Iris experiment 

The starting point is an instance of the SVMExperiment class and we choose 

the following parameters, as shown in Table 2: 

Table 2 Initial experiment setup for the Iris Experiment 

 Sepal Length Sepal Width Petal Length Petal Width 

Min 4.3 2.0 1.0 0.1 

Median 5.8 3.0 4.4 1.3 

Mean 5.8 3.1 3.8 1.2 

Max 7.9 4.4 6.9 2.5 

Parameter Value 

Kernel Polynomial 

C 1.0 

Degree 1.0 

DBD
PUC-Rio - Certificação Digital Nº 1522025/CA



39 
 

The training agents were essentially training the new models proposed, 

while the optimizer agents were trying to tune the parameters of the previously 

executed models and proposing new ones that might have a good accuracy. Table 

3 shows the experiments proposed by the OptimizerAgent and Table 4 shows the 

variables measured. 

Table 3 Experiments ran and proposed by the agents for the Iris 

Experiment 

Id Kernel C Degree Coef0 Gamma Probability Shrinking 
Max 

Iterations 

Decision 

Function 

1 poly 1.0 1 0 Auto 0 1 ‑1 odr 

2 poly 1.5 1 0 Auto 0 1 ‑1 odr 

3 poly 1.5 2 0 Auto 0 1 ‑1 odr 

Table 4 Metrics recorded by the framework for the Iris Experiment 

Id Time (in milisecods) Validation Accuracy 

1 0.006163 0.96 

2 0.004834 0.96 

3 0.005739 0.97 

The first row in Table 3 shows the beginning of the second stage, when only 

the first model had been proposed. Then, the TrainerAgent trained the model, 

resulting in an accuracy of 0.96 (first row in Table 4). The OptimizerAgent 

performed a query to retrieve the trained models and based on the best one, it 

modified the allowed error (parameter C in Table 3) from 1.0 to 1.5 and proposed 

the second model. The TrainerAgent realized that there was a model to train and 

then trained it, resulting in an accuracy of 0.96 as well. Once again, the 

OptimizerAgent modified the degree of the function to propose the third model 

(parameter degree in Table 3) based on the first and the second models. As a result, 

the TrainerAgent trained the new model and obtained a better accuracy of 0.97. 

To obtain new models, the OptimizerAgent balanced the allowed error and 

the degree of the polynomial function. It is possible to see in Table 4 that the last 

trained model performed better in the validation. Thus, in the next KDD phase the 

prediction algorithm will use the best models, based on their accuracy. This 

Coef0 0 

Gamma auto 

Probability False 

Shrinking 1 

Max Iterations ‑1 

Decision Function odr 
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experiment answers our RQ1 and RQ2 because the software agents were able to 

train and propose machine learning models. 

5.2 Lung Images Experiment 

The experiment is divided into three stages. The first stage explains the 

dataset construction process. The second stage describes the initial parameters 

configurations and the framework instanciation. Finally, we briefly discuss the 

results.  

This experiment aims to identify lung tissue in computerized tomography 

exams. Those kinds of exams contain several images without lung tissue from 

upper and lower regions of the body. With a model capable of identify the lung 

tissue, it would be possible to prune the exams and show to the specialist oly the 

images containing lung tissue. 

5.2.1 Lung Images Dataset 

This section is dedicated to the process of get the data ready to be used. This 

process involves the DICOM protocol to extract data as well as image 

manipulation techniques to prepare and normalize the data (Section Preprocess) 

and the annotation process (Section Bitmap Generation). 

5.2.1.1 Preprocess 

The images of the exams were stored in DICOM format and came from real 

anonimaized exams. One of the DICOM tags is the PixelArray, this field contains 

a two-dimension array of densities. Inside the DICOM file there are two other fields 

BitsStored and BitsAllocated specifying the number of bits used to save each 

density and reserved respectively. Using those DICOM tags it is possible to 

normalize the densities. First of all, we shift the densities to fix the minimum in 0 

by the equation: 

𝑃𝑖𝑥𝑒𝑙𝐴𝑟𝑟𝑎𝑦𝑖,𝑗 =  𝑃𝑖𝑥𝑒𝑙𝐴𝑟𝑟𝑎𝑦𝑖,𝑗 − min(𝑃𝑖𝑥𝑒𝑙𝐴𝑟𝑟𝑎𝑦) 

where 𝑖, 𝑗 is a position in the matrix. 

At this point, and due to the fact that this density map is going to be saved as 

an image, a sigmoid transformation was applied and it is described in the following 

equation: 

𝑃𝑖𝑥𝑒𝑙𝐴𝑟𝑟𝑎𝑦𝑖,𝑗 =
1

1 + 𝑒−10∗ 𝑃𝑖𝑥𝑒𝑙𝐴𝑟𝑟𝑎𝑦𝑖,𝑗
 

where 𝑖, 𝑗 is a position in the matrix. 
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These sigmoid transformations, also known as contrast adjustment, are 

commonly used to overcome lightness and contrast loss from rescaling images 

using dynamic ranges (Braun & Fairchild, 1999). 

Note that to apply the sigmoid function the PixelArray must be in the 0 to 1 

range. To overcome this problem the array was rescaled using the following 

transformation before the sigmoid correction: 

𝑃𝑖𝑥𝑒𝑙𝐴𝑟𝑟𝑎𝑦𝑖,𝑗 = 𝑃𝑖𝑥𝑒𝑙𝐴𝑟𝑟𝑎𝑦𝑖,𝑗 ∗
𝐵𝑖𝑡𝑠𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

𝐵𝑖𝑡𝑠𝑆𝑡𝑜𝑟𝑒𝑑
 

where 𝑖, 𝑗 is a position in the matrix. 

After the sigmoid correction, the resulting array remains between 0 and 1. So, 

to save it as an image, it has to be rescaled again to values between 0 and 

BitsAllocated. 

𝑃𝑖𝑥𝑒𝑙𝐴𝑟𝑟𝑎𝑦𝑖,𝑗 = 𝑃𝑖𝑥𝑒𝑙𝐴𝑟𝑟𝑎𝑦𝑖,𝑗 ∗ 𝐵𝑖𝑡𝑠𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 

where 𝑖, 𝑗 is a position in the matrix. 

The final PixelArray is saved using png format. In the rest of the work we 

will refer these images as the original images. 

5.2.1.2 Bitmap Generation 

The most important and expensive data are images in which the lungs are 

completely identified. Indeed, those images are very expensive because are made 

by humans one by one in order to create an annotated dataset. So, for each original 

image, we create another image with the lungs highlighted in red as shown in 

Figure 12. 

 

Figure 12 Original and annotated images 

The annotated images were in png format, more specific, using an RGBA 

(Red, Green, Blue, Alpha) configuration. For the purposes of this research, we 

only needed a bitmap with the same shape of the original image and 1s in the 

lungs. To do so, the annotated images were transformed into a grayscale image, 
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resulting into a single byte matrix and finally applied a transformation for all the 

pixels: 

𝑏𝑚𝑝𝑖,𝑗 =  {
1, 𝑖𝑓 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒𝑖,𝑗 > 127

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝑖, 𝑗 is a position in the bmp matrix 

The bmp image is a matrix of the same dimensions of the original image 

containing only bits 0 or 1 as shown in Figure 13. 

 

Figure 13 Annotated bitmap image 

In the rest of the work we will refer to these images as the bitmap images. 

The dataset contains 258 images, 129 original images and 129 bitmap 

images. In order to use the dataset in a UNet Neural Network (Ronneberger, 

Fischer, & Brox, 2015) model the images were rescaled. The original images 

where rescaled from 512x512 pixels to 572x572 pixels. The bitmap images were 

cropped from 512x512 pixels to 388x388 pixels. 

In Figure 14 it is possible to see the whole dataset construction process. 

Figure 14 (a) is the density map. Figure 14 (b) is the image with the constrast 

adjusted and rescaled using the BitsStored and BitsAllocated DICOM tags. Figure 

14 (c) is the reshaped image with 572x572 pixels. The annotated image is shown 

in Figure 14 (d). In Figure 14 (e) is shown the cropped image and finaly the bitmap 

image is shown in Figure 14 (f). 
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Figure 14 Dataset construction process 

5.2.2 Results 

The framework was instantiated by extending the corresponding hotspots as 

shown in Figure 15. 

 

Figure 15 Lung dataset framework instance 

In Figure 15 it is possible to observe that the TrainingAgent was extended 

in the UnetTrainingAgent and inserted in the train method, the specificities about 

how to train a UNet neural network. To optimize in this instance, we use two 

different combined approaches. The UnetRegresorOptimizationAgent extended 

the OptimizationAgent and uses a linear regression approach to calibrate the 

hyperparameters while the UnetInterpolationOptimizationAgent uses an 
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interpolation approach to estimate the hyperparameters space of solutions and 

propose new models. The optimizers were trying to improve the F1 score. The 

class UnetExperiment extends the SpecificExperiment and adds the parameters 

needed to train a UNet neural network and there was used the FileData class to 

reference the dataset. 

The starting point were two instances of the UnetExperiment with the 

following parameters: 

Table 5 Initial experiment setup for the Lung Images Experiment 

Figure 16 shows the 56 models proposed sorted by the F1 metric in the rows, 

the columns val_accuracy, val_fmeasure, val_precision and val_recall represent 

the metrics recorded during the experiment; and the remaining columns represent 

parameters of the models. It is possible to see one of the starting points in the 23rd 

position and the other is in the 45th highlighted in blue. The metric values in red 

are values close to 0 while the values in green are close to 1.0.  

Parameter Value Value 

Mini Batch Size 3 3 

Initial Epoch 0 0 

Num Epoch 50 40 

Training Samples per Epoch 999 999 

Validation Samples per Epoch 888 888 

Momentum 0.5 0.5 

Learning Rate 0.001 0.01 

Decay 0.000001 0.000001 

Dropout 0.1 0 
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Figure 16 Models proposed by the software agents for the Lung Image 

Experiment 

It is also possible to see in Figure 16 that the models 9, 11, and 12 did not 

learn because the recall is 1.0 and the accuracy is 0.0000001. This means that 

those models always predict the same class. 

DBD
PUC-Rio - Certificação Digital Nº 1522025/CA



46 
 

 

Figure 17 Models trained by the software agents in terms of precision and 

recall 

Figure 17 shows each model trained in the precision versus recall space. The 

values used to plot the models were the ones obtained during the validation stage. 

In blue, we represent the starting points; and in gray, we represent the solutions 

generated by the software agents. It is possible to see two major goups, the first is 

trying to increase the precision while the second is focused on improving the 

recall. In this experiment we want to be sure that images without lungs are safely 

eliminated. So, the models could be used to prune the output of the exams and 

only show the images that have lung tissue. Following this idea, we prefer a model 

located in the group improving the recall. If we tried in this example to improve 

the precision, we might miss some images containing lung tissue. The gray area 

is zoomed in Figure 18. 
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Figure 18 Models with recall greater than 0.75 

Figure 18 presents a zoom of the models with recall greater than 0.75. The 

numbers in each model represent the first column of the models presented in 

Figure 16. Removing the 9, 11, and 12; due to the fact that the models did not 

learn, we could use solutions between 1 and 10 as final solutions to filter the exams 

removing images that do not contain lung tissue. This experiment answers our 

RQ3 because the models proposed by the software agents were more accurate over 

time. 

5.3 Grid Sector Experiment 

This experiment was intended to be different form the above experiemets. 

The Iris Experiment and the Lung Images Experiment were designed in such 

manner that the software agents must find solutions from misleading start points, 

in this experiment the software agents will have a good starting point and the goal 

is whether the agents will be able to improve the metrics or not. 

5.3.1 Grid Sector Dataset 

In this experiment, we use the GridSector Dataset. This dataset was 

proposed in (ALMEIDA, Cassio F. P, 2017) and it contains 252 images, 126 

images were obtained from Google Earth (江宽, 2008)(江宽, 2008)(江宽, 2008)(

江宽 , 2008) and 126 were annotated during the construction process. The 

objective of the task is to identify the built areas inside the images. So, the 
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annotated images are bitmaps highlighting the constructed areas. Image sizes vary 

around 900x900 pixels and the images were collected from 12 different regions 

of Brazil, taking into account geographical differences in the soil, light and 

darkness, occlusion, and cloud shadows. 

5.3.2 Results 

Figure 19 shows how the framework was instantiated for the GridSector 

experiment. Due to the coincidence of the machine learning model, we were able 

to reuse most of the classes from the Lung Images Experiment. However, in this 

experiment we only use the UnetInterpolationOptimizationAgent to calibrate the 

hyperparameters to improve de F1 score and the FileData class pointed to another 

dataset of the same type. 

 

Figure 19 Framework instance for the Grid Sector Experiment 

The initial configuration for this experiment can be found in (ALMEIDA, 

Cassio F. P, 2017) as the better solution found for the problem. The parameters 

used are shown in Table 6: 

Table 6 Initial experiment setup for the Grid Sector Experiment 

Parameter Value 

Mini Batch Size 3 

Initial Epoch 0 

Num Epoch 450 

Training Samples per Epoch 447 

Validation Samples per Epoch 98 

Momentum 0.5 

Learning Rate 0.01 

Decay 0.000001 

Dropout 0 
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Using these parameters the accuracy was 0.9581, the precision was 0.9378, 

the 0.9411, and F1 score was 0.9393. The results obtained from the software 

agents are shown in Figure 20. 

 

Figure 20 Results obtained from the software agents from the Grid 

Sector Experiment 

In Figure 20 the two starting points set up manually can be seen highlighted 

in blue. The columns val_accuracy, val_fmeasure, val_precision and val_recall 

represent the metrics recorded during the experiment; and the remaining columns 

represent paramenters of the models. The metric values in red are values close to 

0 while the values in green are close to 1.0. The models listed from 3 to 18 were 

generated by the UnetInterpolationOptimizationAgent. It is possible to see that 

the models generated by the agents were not able to improve the starting point 

metrics by appling interpolation techniques on the hyperparameters domain 

proving that the starting solution was a good one for the problem. 
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6 Conclusion and Future work 

This chapter proposes a MAS to set up a battery of experiments and tools to 

help in the training and prediction processes. We conclude that it is possible to 

take advantage of the characteristics of the software agents to train machine 

learning models, and also to make decisions about new models that might have 

good accuracy. The API presented in this work is a tool to demonstrate that a 

multiagent learning approach is reasonable and decreases the models’ training 

time. The multiagent system inside the proposed solution is the core of the 

application because it requires autonomy to make decisions, proactivity to create 

new experiments, and reactivity to deal with overfitting and low accuracy. By 

automating this process, the users only need to set up the initial battery of 

experiments, which reduces the time dedicated to train a successful model. 

Three experiments in three different datasets were carried out. In each one 

it was possible to instantiate the proposed framework and the instances were able 

to generate machine learning models for the different problems. Each new model 

was intended to enhance the knowledge about the hyperparameter space of 

solutions in order to generate more accurate models. In the case of the Lung 

Experiment, a dataset of 258 images was created, 129 images from specialized 

equipment and 129 handmade annotated images highlighting the lung tissue. 

For future work, we have three goals: 

First, Features Selection: An interesting problem is how to improve the 

performance of the training by first selecting the most important attributes. This 

could significantly impact the time spent to train a model. Other possible 

approaches to improve performance include the use of heuristics such as Principal 

Features Analysis (PFA) (Lu, Cohen, Zhou, & Tian, 2007) or methods, such as 

Sequential Forward Selection (SFS) (Doak, 1992) and Sequential Backward 

Selection (SBS) (Doak, 1992). 

Second, Initial Model: It would be very interesting that the framework could 

propose the starting models for a given problem. To do this, one possible solution 

could be made by mapping the features and their characteristics to the problem to 

the algorithms used to generate the models. 
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Third, Feedback: The instances do not communicate with the user to give a 

feedback of the results. For instance, the system could send alerts to the user via 

email, short messages, among others to inform the results of the trained 

experiments, or when it is obtained a model that improves the metrics of the 

previous models. This future work will close the relation between the software 

agents and users. 
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